您好,欢迎光临有路网!
基本拓扑学(英文版)
QQ咨询:
有路璐璐:

基本拓扑学(英文版)

  • 作者:(英)阿姆斯壮
  • 出版社:世界图书出版社
  • ISBN:9787506283458
  • 出版日期:2008年01月01日
  • 页数:251
  • 定价:¥36.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    This is a topology book for undergraduates,and in writing it I have had two aims in mind.Firstly,to make sure the student sees a variety of defferent techniques and applications involving point set,geometric,and algebraic topology,without celving too deeply into any particular area.Secondly,to develop the reader's geometrical insight;topology is after all a branch of geometry.
    本书为全英文版。
    目录
    Preface
    Chapter 1 Introduction
    1.Euler's theorem
    2.Topological equivalence
    3.Surfaces
    4.Abstract spaces
    5.A classification theorem
    6.Topological invariants
    Chapter 2 Continuity
    1.Open and closed sets
    2.Continuous functions
    3.A space-filling curve
    4.The Tietze extension theorem
    Chapter 3 Compactness and connectedness
    1.Closed bounded subsets of E"
    2.The Heine-Borel theorem
    3.Properties of compact spaces
    4.Product spaces
    5.Connectedness
    6.Joining points by paths
    Chapter 4 Identification spaces
    1.Constructing a M/Sbius strip
    2.The identification topology
    3.Topological groups
    4.Orbit spaces
    Chapter 5 The fundamental group
    1.Homotopic maps
    2.Construction of the fundamental group
    3.Calculations
    4.Homotopy type
    5.The Brouwer fixed-point theorem
    6.Separation of the plane
    7.The boundary of a surface
    Chapter 6 Triangulations
    1.Triangulating spaces
    2.Barycentric subdivision
    3.Simplicial approximation
    4.The edge group of a complex
    5.Triangulating orbit spaces
    6.Infinite complexes
    Chapter 7 Surfaces
    1.Classification
    2.Triangulation and orientation
    3.Euler characteristics
    4.Surgery
    5.Surface symbols
    Chapter 8 Simplicial homology
    1.Cycles and boundaries
    2.Homology groups
    3.Examples
    4.Simplicial maps
    5.Stellar subdivision
    6.Invariance
    Chapter 9 Degree and Lefschetz number
    1.Maps of spheres
    2.The Euler-Poincar6 formula
    3.The Borsuk-Ulam theorem
    4.The Lefschetz fixed-point theorem
    5.Dimension
    Chapter 10 Knots and covering spaces
    1.Examples of knots
    2.The knot group
    3.Seifert surfaces
    4.Covering spaces
    5.The Alexander polynomial
    Appendix: Generators and relations
    Index

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外